Hashing

Part One



Outline for Today

e Hash Functions

 An amazingly versatile tool.
 Hash Tables

 Implementing a very fast Set.



Two Motivating Problems



I love
you!

Did my data make it through the network?



@ )

htiek: Gerenuk Quokka
jcoronad: Pudu_Dikdik
kjeong: Springbok_Kudu

& y

How do servers store passwords?



Way Back When...



int nameHash(string first, string last){
/* This hashing scheme needs two prime numbers, a large prime and a small
* prime. These numbers were chosen because their product is less than
* 2731 - kLargePrime - 1.
*/
static const int kLargePrime
static const int kSmallPrime

16908799;
127;

int hashVal = 0;

/* Iterate across all the characters in the first name, then the last
* name, updating the hash at each step.
*/
for (char ch: first + last) {
/* Convert the input character to lower case. The numeric values of
* lower-case letters are always less than 127.
*/
ch = tolower(ch);
hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
}

return hashVal;



NN

NS

Hash Function

This is a hash function. It’s a type of function some
smart math and CS people came up with.



NN

NS

Hash Function

Most hash functions return a number.
In CS106B, we’ll use the int type.



NN

NS

Hash Function

Different hash functions take inputs of different types.
In this example, we’ll assume it takes string inputs.



NN

NS

Hash Function

What makes this type of function so special?



"dikdik"
I _» 28156

NN

NS

Hash Function
dikdik'—

First, if you compute the hash code of the same string
many times, you always get the same value.



"dikdik"
T _» 28156

npudun - - NN
N
Hash Function
dikdik'— 33T

Second, the hash codes of different inputs are
(usually) very different from one another.



To Recap:

Equal inputs give equal outputs.

Unequal inputs (usually) give
very ditferent outputs.



Designing Hash Functions

* Designing good hash
functions is challenging, and
it’s beyond the scope of what
we’ll explore in CS106B.

« We will assume that some
Smart, Attractive, Witty
person has created the hash
functions we’ll use this
quarter and won'’t look into
how they work.

» Like finite fields and abstract
algebra? Stick around after
class and I can share more of
the technical details.

Pr[h(x)=s A h(y)=t] = %
hew m

L h(exixo) = Tolxo] @ Tilxi] ® Tolx]



Working with Hash Functions



Working with Hash Functions

» Every programming language has a different
way for programmers to work with hash

functions.

 In CS106B, we’ll represent hash functions
using the type HashFunction<Ts>.

AN int
T - N g

HashFunction<T>



Working with Hash Functions

« In many applications, we need a hash function that outputs
values in a small range.

« To create a hash function that outputs values between 0
and n - 1, inclusive, use this syntax:

HashFunction<T> hashFn = forSize(n);

HashFunction<T>

CLLAN




Hash Collisions

A hash collision is a pair of inputs to a
hash function that produce the same
outputs.

 When working with hash functions over a
constrained range, hash collisions are
unavoidable.

» This isn’t the fault of the hash function. If
you only have n possible outputs and drop
in n+1 inputs, you're guaranteed to have
a collision.



Hash Collisions

 Think back to the two examples we saw
earlier (sending data and storing
passwords).

 What bad things might happen in those
examples if there are hash collisions?

Answer at
htips://cs106b.stanford.edu/pollev



https://cs106b.stanford.edu/pollev

Time-Out for Announcements!



Midterm Debrief

 We graded the midterm exam over the
weekend and scores are now available on
Gradescope. Solutions and statistics are
up on the course website.

* Please reach out to Jonathan, to your
section leader, or to me if you want to set
up a time to chat about your exam.

 Regrade requests are open. Check
EdStem for information about how to
submit a request.



Midquarter Check-In

« This part of the quarter can be a stressful time.

* We are all part of a broader campus community and
we all need to look out for each other.

 If you're feeling stressed or overwhelmed, please feel
free to reach out to me. I'm happy to help however I
can.

* If you know someone in your dorm who’s having a
rough time, check in with them and make sure they're
doing okay.

* You are so much more than your academics and your
well-being takes precedence over your coursework. If
you're feeling like those are in tension, please reach
out to me.



A Note on the Honor Code



Back to CS106B!



An Application:
Map and Set



class OurSet {
public:
OurSet();

void add(const std::string& str);
bool contains(const std::string& str) const;

int size() const;
bool i1sEmpty() const;

rivate:
P /* What goes here? */| 1N header files, we refer to

the string type as std::string.

}; It’s an Endearing C++

’ Quirk. Feel free to ask me
about this after class if

you’'re curious why.




Our Strategy

 Maintain a large number of small
collections called buckets (think
drawers).

 Find a rule that lets us tell where each
object should go (think knowing which
drawer is which).

* To find something, only look in the
bucket assigned to it (think looking for
socks).



buckets [2]

urania

void OurSet::add(const string& value) {
i1f (contains(value)) return;

int bucket = hashFn(value); urania

buckets[bucket] += value; (bucket 2)
numElems++;




How efficient is this?



Analyzing our Efficiency

« Each hash table operation
« chooses a bucket and jumps there, then
« potentially scans everything in the bucket.

* Choosing the bucket only requires us to hash the input, which
is decently quick. So what’s needed for that next step?

buckets [0] [1] [2] [3] [4] [5]
calliope | polyhymnia urania clio melpomene
terpsichore erato thalia
euterpe




Analyzing our Efficiency

 Imagine we have b buckets and n elements in our
table.

* On average, we'll have n / b items in each bucket.

 The average cost of an insertion, deletion, or
lookup is therefore

O(1 + n/b).

 The load factor of a hash table, denoted «, is the
ratio of items to buckets (a = n / b).

* If we keep a small (say, a = 2), then the average
operation cost is O(1). That’'s as good as it can
possibly get! How do we do this?



Remember When?

« Think back to how we
implemented the Stack.

. Initially, we had a fixed 137 | 42 (27106 e

number of slots. ?
* Once we ran out of space,
we doubled the number of
slots and transferred things | ©'ement
array
over.
 Idea: Whenever o > 2, allocated 4
double the number of size
buckets. This keeps « .
below two and makes all logical 3
operations take average S126

time O(1).



Rehashing

* To perform a rehash, do the following:

 Get a new list of buckets, twice as big as before.

 Get a new hash function that distributes
elements across the wider range.

« Redistribute the elements from the old buckets
into the new ones, using the new hash function.

« Use the new buckets and hash functions going
forward.

* Time required is O(n). However, this
happens so rarely that the extra work
averages out to O(1) per insert.



Your Action Items

» Work on Assignment 5

* If you’re tollowing our timetable, by this
point you should be done with the Debugger
Warmup and String Simulation and making
progress through Tone Matrix.

 Need help or support? Come talk to us at
LalR, in office hours, or over EdStem!



Next Time

* Open Addressing

» A different conception of hash tables.
 Linear Probing

« A fast, flexible hash table.
* Robin Hood Hashing

* A fairer way to hash items.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 36
	Slide 37

